首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21824篇
  免费   2286篇
  国内免费   4905篇
化学   25585篇
晶体学   132篇
力学   260篇
综合类   115篇
数学   420篇
物理学   2503篇
  2024年   26篇
  2023年   343篇
  2022年   497篇
  2021年   743篇
  2020年   1178篇
  2019年   987篇
  2018年   1019篇
  2017年   931篇
  2016年   1010篇
  2015年   947篇
  2014年   1429篇
  2013年   2217篇
  2012年   1241篇
  2011年   1540篇
  2010年   1171篇
  2009年   1283篇
  2008年   1367篇
  2007年   1492篇
  2006年   1381篇
  2005年   1293篇
  2004年   1266篇
  2003年   966篇
  2002年   568篇
  2001年   462篇
  2000年   450篇
  1999年   382篇
  1998年   341篇
  1997年   305篇
  1996年   282篇
  1995年   293篇
  1994年   248篇
  1993年   192篇
  1992年   188篇
  1991年   140篇
  1990年   110篇
  1989年   102篇
  1988年   82篇
  1987年   53篇
  1986年   48篇
  1985年   53篇
  1984年   48篇
  1983年   26篇
  1982年   36篇
  1981年   35篇
  1980年   26篇
  1979年   24篇
  1978年   27篇
  1977年   29篇
  1976年   36篇
  1974年   38篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Surface plasmon can trigger or accelerate many photochemical reactions, especially useful in energy and environmental industries. Recently, molecular adsorption has proven effective in modulating plasmon-mediated photochemistry, however the realized chemical reactions are limited and the underlying mechanism is still unclear. Herein, by using in situ dark-field optical microscopy, the plasmon-mediated oxidative etching of silver nanoparticles (Ag NPs), a typical hot-hole-driven reaction, is monitored continuously and quantitatively. The presence of thiol or thiophenol molecules is found essential in the silver oxidation. In addition, the rate of silver oxidation is modulated by the choice of different thiol or thiophenol molecules. Compared with the molecules having electron donating groups, the ones having electron accepting groups accelerate the silver oxidation dramatically. The thiol/thiophenol modulation is attributed to the modulation of the charge separation between the Ag NPs and the adsorbed thiol or thiophenol molecules. This work demonstrates the great potential of molecular adsorption in modulating the plasmon-mediated photochemistry, which will pave a new way for developing highly efficient plasmonic photocatalysts.  相似文献   
82.
The allergic reaction (AR) of Chinese herbal injection (CHI) has become one of the most noticeable focuses of public health in China. However, it still remains a considerable controversy as to whether low-molecular-weight components in CHI have potential sensitization. In this study, the relationship between AR and low-molecular-weight component profile of Shenmai injection was explored by an interdisciplinary technology integrating real-world evidence and ultra-performance liquid chromatography–quadrupole time-of-flight mass spectroscopy (UPLC–Q-TOF-MS). The AR information of hospitalized patients was obtained by comprehensively analyzing real-world evidence from January 2015 to June 2019 at two Chinese hospitals. The UPLC–Q-TOF-MS was exploited to systematically investigate the low-molecular-weight component profile with 50–1500 m/z mass range, and 3725 MS1 peaks were detected. The optimized partial least squares discriminant analysis model was established to map the influence of low-molecular-weight components on AR. The results of this study showed that high levels of organic acids administered intravenously might be a potential risk factor for inducing AR. By using this method, Shenmai injection with high AR risk could be recognized precisely with 100% accuracy before clinical use.  相似文献   
83.
Thermally healing capability of cracks and defects is important and urgent for the safe operation and life extending of electric materials and devices. Here, by the combination of thermally driven reversible Diels–Alder (DA) interaction and in-situ chemical oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT), a series of intrinsically conductive poly(3,4-ethylenedioxythiophene) (PEDOT)/DA composites possess intrinsically self-healing property under low-temperature (reverse DA reaction at 100°C; DA crosslinking at 60°C) stimulus were achieved. The crosslinking DA bonding reactions are multiple from the co-existence of pre-synthesized macromolecular polyurethane attached DA units (PU-DA) and 2,4-hexadiyne-1,6-diol (DADOL) in the films. PU-DA involved in the polymerization process of EDOT to endow PEDOT with outstanding solution-processability, uniform film making, and structural self-healing capability, while DADOL was added to enhance the cross bonding between polymer chains. This work will accelerate the research and application development of intrinsically self-healing conducting polymers for commercial capacitors, antistatic coatings, implantable, printable electronics, and so on.  相似文献   
84.
The development of convenient new methods for the synthesis of organic azides is highly desirable. Herein, we report a practical method for dehydroxyazidation of alcohols via an SN2 pathway involving PPh3 and trifunctional benziodazolone-based hypervalent azido-iodine(III) reagents, which function as an electrophilic center, an azido source, and a base. This mild, chemoselective method was used for late-stage azidation of structurally complex alcohols, as well as for a new synthetic route to the antiepileptic drug rufinamide. The reaction mechanism was also investigated both experimentally and computationally.  相似文献   
85.
We report a stereoselective conversion of terminal alkynes to α-chiral carboxylic acids using a nickel-catalyzed domino hydrocarboxylation-transfer hydrogenation reaction. A simple nickel/BenzP* catalyst displayed high activity in both steps of regioselective hydrocarboxylation of alkynes and subsequent asymmetric transfer hydrogenation. The reaction was successfully applied in enantioselective preparation of three nonsteroidal anti-inflammatory profens (>90 % ees) and the chiral fragment of AZD2716.  相似文献   
86.
Perovskite is a promising non-noble catalyst and has been widely investigated for the electrochemical oxygen evolution reaction (OER). However, there is still serious lack of valid approaches to further enhance their catalytic performance. Herein, we propose a spin state modulation strategy to improve the OER electrocatalytic activity of typical perovskite material of LaCoO3. Specifically, the electronic configuration transition was realized by a simple high temperature thermal reduction process. M-H hysteresis loop results reveal that the reduction treatment can produce more unpaired electrons in 3d orbit by promoting the electron transitions of Co from low spin state to high spin state, and thus lead to the increase of the spin polarization. Electrochemical measurements show that the catalytic performance of LaCoO3 is strongly dependent on its electronic configuration. With the optimized reduction treatment, the overpotential for the OER process in 0.5 M KOH electrolyte solution at 10 mA cm−2 current density was 396 mV, significantly lower than that of the original state. Furthermore, it can mediate efficient OER with an overpotential of 383 mV under an external magnetic field, which is attributed to the appropriate electron filling. Our results show that electron spin state regulation is a new way to boost the OER electrocatalytic activity.  相似文献   
87.
《Mendeleev Communications》2022,32(4):507-509
We report on the synthesis of new Ru(bpy)2(phen) catalyst for the oscillatory Belousov–Zhabotinsky chemical reaction and on the preparation of novel Ru(bpy)2(phen)-based self-oscillating gels. The synthesized gels exhibit high-amplitude autonomous mechanical oscillations when the Belousov–Zhabotinsky reaction proceeds inside these gels  相似文献   
88.
Hydrogen energy is an abundant, clean, sustainable and environmentally friendly renewable energy source. Therefore, the production of hydrogen by photocatalytically splitting water on semiconductors has been considered in recent years as a promising and sustainable strategy for converting solar energy into chemical energy to replace conventional energy sources and to solve the growing problem of environmental pollution and the global energy crisis. However, highly efficient solar-driven photocatalytic hydrogen production remains a huge challenge due to the poor visible light response of available photocatalytic materials and the low efficiency of separation and transfer of photogenerated electron-hole pairs. In the present work, organic heterojunction structures based on bacteriochlorophyll (BChl) and chlorophyll (Chl) molecules were introduced and used for solar-driven photocatalytic hydrogen production from water under visible light. Also, noble metal-free photocatalyst was successfully constructed on Ti3C2Tx nanosheets by simple successive deposition of Chl and BChl, which was used for the photocatalytic splitting water to hydrogen evolution reaction (HER). The results show that the optimal BChl@Chl@Ti3C2Tx composite has a high HER performance with 114 μmol/h/gcat, which is much higher than the BChl@Ti3C2Tx and Chl@Ti3C2Tx composites.  相似文献   
89.
Cysteine bioconjugation serves as a powerful tool in biological research and has been widely used for chemical modification of proteins, constructing antibody-drug conjugates, and enabling cell imaging studies. Cysteine conjugation reactions with fast kinetics and exquisite selectivity have been under heavy pursuit as they would allow clean protein modification with just stoichiometric amounts of reagents, which minimizes side reactions, simplifies purification and broadens functional group tolerance. In this concept, we summarize the recent advances in fast cysteine bioconjugation, and discuss the mechanism and chemical principles that underlie the high efficiencies of the newly developed cysteine reactive reagents.  相似文献   
90.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号